skip to main content


Search for: All records

Creators/Authors contains: "Gilbert, Simeon J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The presence of in-plane chiral effects, hence spin–orbit coupling, is evident in the changes in the photocurrent produced in a TiS 3 (001) field-effect phototransistor with left versus right circularly polarized light. The direction of the photocurrent is protected by the presence of strong spin–orbit coupling and the anisotropy of the band structure as indicated in NanoARPES measurements. Dark electronic transport measurements indicate that TiS 3 is n-type and has an electron mobility in the range of 1–6 cm 2 V −1 s −1 . I – V measurements under laser illumination indicate the photocurrent exhibits a bias directionality dependence, reminiscent of bipolar spin diode behavior. Because the TiS 3 contains no heavy elements, the presence of spin–orbit coupling must be attributed to the observed loss of inversion symmetry at the TiS 3 (001) surface. 
    more » « less
  2. null (Ed.)
  3. Abstract

    Theoretical and experimental investigations of various exfoliated samples taken from layered In4Se3crystals are performed. In spite of the ionic character of interlayer interactions in In4Se3and hence much higher calculated cleavage energies compared to graphite, it is possible to produce few‐nanometer‐thick flakes of In4Se3by mechanical exfoliation of its bulk crystals. The In4Se3flakes exfoliated on Si/SiO2have anisotropic electronic properties and exhibit field‐effect electron mobilities of about 50 cm2 V−1 s−1at room temperature, which are comparable with other popular transition metal chalcogenide (TMC) electronic materials, such as MoS2and TiS3. In4Se3devices exhibit a visible range photoresponse on a timescale of less than 30 ms. The photoresponse depends on the polarization of the excitation light consistent with symmetry‐dependent band structure calculations for the most expectedaccleavage plane. These results demonstrate that mechanical exfoliation of layered ionic In4Se3crystals is possible, while the fast anisotropic photoresponse makes In4Se3a competitive electronic material, in the TMC family, for emerging optoelectronic device applications.

     
    more » « less